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Which panel data estimator

should I use?

W. Robert Reeda,* and Haichun Yeb

aDepartment of Economics, University of Canterbury, Private Bag 4800,

Christchurch 8020, New Zealand
bDepartment of Economics, University of Colorado Denver, Denver, USA

This study employs Monte Carlo experiments to evaluate the performances

of a number of common panel data estimators when serial correlation and

cross-sectional dependence are both present. It focuses on fixed effects

models with less than 100 cross-sectional units and between 10 and 25 time

periods (such as are commonly employed in empirical growth studies).

Estimator performance is compared on two dimensions: (i) root mean

square error and (ii) accuracy of estimated confidence intervals. An

innovation of our study is that our simulated panel data sets are designed

to look like ‘real-world’ panel data. We find large differences in the

performances of the respective estimators. Further, estimators that

perform well on efficiency grounds may perform poorly when estimating

confidence intervals and vice versa. Our experimental results form the basis

for a set of estimator recommendations. These are applied to ‘out of

sample’ simulated panel data sets and found to perform well.

‘My worry as an econometric theorist is not that

there is tension between us (the theorists) and

them (the applied economists). On the contrary,

such tension can be healthy and inspiring. My

worry is rather the lack of tension. There are

two camps, a gap between them, and little

communication.’
J. R. Magnus (1999)1

I. Introduction

Panel data can be characterized by complex error

structures. The presence of nonspherical errors, if not

properly addressed, can generate inefficiency in

coefficient estimation and biasedness in the estima-

tion of SEs. Serial correlation has long been

recognized as a potential problem for panel data.

Cross-sectional dependence has recently received

renewed attention (Driscoll and Kraay, 1998;

De Hoyos and Sarafidis, 2006). It is likely that both

of these are present in many empirical applications

(Jönsson, 2005). This is a problem, because most

common panel data estimators are unable to simul-

taneously handle both serial correlation and cross-

sectional dependence.
One estimator that can is Parks’ Feasible

Generalized Least Squares (FGLS) estimator

(Parks, 1967). However, it can only be implemented

when the number of time periods (T) is greater than

*Corresponding author. E-mail: bobreednz@yahoo.com
1This quote is taken from Peter Kennedy’s A Guide to Econometrics, 5th edn (2003, p. 405).
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or equal to the number of cross-sections (N). An

additional problem is that Parks’ FGLS estimator is

known to underestimate SEs in finite samples,

often severely so. Beck and Katz (1995) report that

a two-step, modified version of ‘inefficient’

Ordinary Least Squares (OLS) – known as ‘Panel-

Corrected Standard Error’ (PCSE) estimation –

performs substantially better than the asymptotically

efficient FGLS (Parks) estimator in many

circumstances.2

The poor performance of the Parks’ FGLS

estimator in finite samples is illustrative: It arises

because the true error variance–covariance matrix is

unknown. Substituting estimates for the elements of

the population variance–covariance matrix impairs

the performance of FGLS estimation. It opens up the

door for asymptotically inefficient estimators to

perform better in finite samples.3

All of this creates a confusing situation for

researchers using panel data in which both serial

correlation and cross-sectional dependence may be

present. On the one hand, there is a plethora of

panel data estimators available from statistical

software packages like EViews, LIMDEP, RATS,

SAS, Stata, TSP and others. On the other hand, the

finite sample performances of these estimators are

not well known. At the end of the day, it is not clear

which estimator one should use in a given research

situation.
This study attempts to shed some light on this

subject. It uses Monte Carlo analysis to evaluate the

performances of a number of common panel data

estimators when both serial correlation and cross-

sectional dependence are present. Given the vast

scope of this research area, our study is inevitably

narrow in its focus: It works with data sets in which

the number of cross-sectional units is less than 100

and the number of time periods range from 10 to

25 – sizes typical for panel data studies of economic

growth across countries and US states. It studies

fixed-effects models, but not random effects. And it

draws its set of panel data estimators from the

menu of choices available in Stata and EViews.

Estimator performance is compared on two dimen-

sions: (i) root mean square error (‘efficiency’)4 and

(ii) accuracy of estimated confidence intervals

(‘coverage’).
A criticism of the Monte Carlo approach is that

the population parameter values used in experi-

ments may not represent ‘real-world’ data. This

criticism is particularly valid for panel data, where

the number of population parameters in the error

variance–covariance matrix can be larger than the

number of observations. A further complication is

that the performance of the estimators can be a

function of the distribution of the explanatory

variables (see, e.g. Peterson, 2007). An innovation

of our study is that we attempt to address this

concern by creating simulated data environments

that look like ‘real-world’ panel data.
We have three main findings. First, the choice of

which estimator to use is an important one that can

substantially impact one’s research findings. There

are large differences in the performances of the

respective estimators. Second, we find that estimators

that perform well on efficiency grounds may perform

poorly when estimating confidence intervals, and vice

versa. For example, in many settings FGLS (Parks) is

the best overall estimator with respect to efficiency,

but the worst when it comes to estimating confidence

intervals. This means that researchers may have to

use one estimator if they want the ‘best’ coefficient

estimates, and another if they desire reliable

hypothesis testing.
Third, our experiments identify a number of data

scenarios where one estimator performs better

than the others with respect to (i) efficiency or

(ii) coverage. This leads us to make a set of (tentative)

recommendations concerning specific panel data

estimator(s) one should use in given situations. As a

check, we apply these recommendations to ‘out of

sample’ simulated panel data. Our recommendations

perform well.
The article proceeds as follows. Section II describes

the Monte Carlo experiments, including a description

of the specific estimators that we study and the

performance measures we use to compare them.

Section III characterizes the simulated panel data

sets used in our experiments. Section IV analyses

the results of the Monte Carlo experiments and

2As a result, the PCSE estimator has been widely adopted. A recent Web of Science search found approximately 700 citations
of Beck and Katz (1995). Applications of this estimator can be found in Bitzer and Stephan (2007), Mosca (2007), Lago-Penas
(2006) and Marques (2005).
3 This is consistent with the ‘shrinkage principle,’ well-known in the forecasting literature, that imposing incorrect restrictions
on a model can improve forecast performance (Diebold, 2004, p. 45).
4We follow other Monte Carlo studies in equating efficiency with MSE (cf. Beck and Katz, 1995), but recognize that FGLS is
biased in small samples.
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develops specific estimator recommendations.

Section V applies these recommendations to new

simulated data to see whether the recommendations

are valid when applied elsewhere. Section VI

concludes.

II. Description of the Monte Carlo
Experiments

The Data Generating Process (DGP)

Our simulated data environments are designed to

incorporate both serial correlation and cross-

sectional dependence. We model the following fixed-

effects DGP:

y1

y2

..

.

yN

2
66666664

3
77777775
¼

�1

�2

..

.

�N

2
66666664

3
77777775
þ

X1

X2

..

.

XN

2
6666664

3
7777775
�x þ

e1

e2

..

.

eN

2
6666664

3
7777775

or y ¼ b0 þ X�x þ e ð1Þ

where N and T are the number of cross-sectional

units and time periods, respectively; yi is a T� 1

vector of observations of the dependent variable

for the i-th cross-sectional unit; Xi is a T� 1

vector of observations of the exogenous explana-

tory variable; �i, i ¼ 1, 2, . . . ,N, and �x are scalars;

and ei is a T� 1 vector of error terms, where

e � Nð0,:NTÞ.
We want a structure for :NT that can

simultaneously incorporate serial correlation and

cross-sectional dependence in the error term.

Accordingly, we adopt a version of Parks’

(1967) well-known model. It assumes (i) group-

wise heteroscedasticity; (ii) first-order serial corre-

lation; and (iii) time-invariant cross-sectional

dependence. We employ the following specification

for :NT:
5

:NT ¼ D�& ð2Þ

where

D ¼

�", 11 �", 12 � � � �", 1N

�", 21 �", 22 � � � �", 2N

..

. ..
. . .

. ..
.

�",N1 �",N2 � � � �",NN

2
66664

3
77775

& ¼

1 � �2 � � � �T�1

� 1 � � � � �T�2

�2 � 1 � � � �T�3

..

. ..
. ..

. . .
. ..

.

�T�1 �T�2 �T�3 � � � 1

2
66666664

3
77777775

"it ¼ �"i, t�1 þ uit and �", ij ¼
�u, ij

1� �2

In order to generate panel data observations using

this DGP, we must select values for the population

parameters, including the distribution of the expla-

natory variable, X. We would like these to be set at

values that typify ‘real-world’ panel data. The

challenge in doing this is illustrated by the large

number of elements in the error variance–covariance

matrix. There are ½ðNðNþ 1Þ=2Þ þ 1� unique para-

meters in :NT. So, for example, when N ¼ 20, we

must set 211 population values for :NT, each of

which can take a wide range of values. Unfortunately,

theory offers little guidance as to which of these

parameters, or which relationships between param-

eters, are most significant for the performance of the

estimators in finite samples.
Our solution to this problem is to estimate a

large number of ‘real-world’ panel data sets of

various (N,T) sizes. The residuals from these

regressions are used to estimate the elements of

Parks-type, error variance–covariance matrices.

These are then referenced to set the population

parameters in the DGP. Population values for the

�’s and the distribution of X are set using a

similar procedure.6

The estimators

There are many estimators available to researchers

working with panel data that may have serial

correlation and cross-sectional dependence. We

choose our estimators from the menu of panel data

5 In its most general form, the Parks model assumes groupwise, first-order serial correlation. In contrast, our experiments
model the DGP with an AR(1) parameter, �, that is the same across groups. We do this for two reasons. First, Beck and Katz
(1995) recommend that researchers should impose a common AR(1) parameter when estimating the Parks model, and we
wanted our full Parks model estimators to be correctly specified. Second, having a single AR(1) parameter facilitates
characterization and comparison of serial correlation within and across the simulated data sets.
6Details are provided in an Appendix available from the authors.
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estimators available in Stata and EViews, though

most of these can be found in other software

packages. Within these two packages, there are a

variety of commands and options available to the

user, depending on the specific assumptions he/she

makes about heteroscedasticity, serial correlation and

cross-sectional dependence. We focus on four

categories of estimators: (i) OLS, (ii) FGLS,

(iii) OLS/FGLS with ‘robust’ SEs and (iv) the

PCSE estimator, a two-step estimator that is neither

OLS nor FGLS.7

OLS and FGLS estimators employ the following

general formulae for b̂ and Varðb̂Þ:

b̂ ¼ X0:̂
�1
X

� ��1
X0:̂�1y ð3Þ

Var b̂
� �
¼ X0:̂

�1
X

� ��1
ð4Þ

where :̂ incorporates implicit assumptions about

error heteroscedasticity, serial correlation and cross-

sectional dependence. OLS arises when :NT is

assumed to be characterized by homoscedasticity,

no serial correlation and no cross-sectional depen-

dence. At the other end of the spectrum, FGLS

(Parks) assumes groupwise heteroscedasticity,

first-order serial correlation and time-invariant

cross-sectional dependence.
FGLS (Parks) is not computable when N > T,

because D̂ is not full rank (cf. Equation 2). For this

and other reasons, our study includes two FGLS

estimators that do not incorporate cross-sectional

dependence. These assume, respectively, that :NT is

characterized by (i) groupwise heteroscedasticity,

no serial correlation and no cross-sectional

dependence and (ii) groupwise heteroscedasticity

and first-order serial correlation, but no cross-

sectional dependence.
In contrast, OLS and (partial)8 FGLS with ‘robust’

SEs employ the following general formulae:

b̂ ¼ X0W
�1
X

� ��1
X0W

�1
y ð5Þ

Var b̂
� �
¼ X0W

�1
X

� ��1
X0W

�1:̂W
�1
X

� �
X0W

�1
X

� ��1
ð6Þ

where W identifies the ‘weighting matrix’ and

:̂ incorporates assumptions about the estimated

error variance–covariance matrix. OLS coefficient

estimates are produced when W is the identity matrix.

Our study includes OLS estimators with ‘robust’ SEs

where the robustness refers to (i) heteroscedasticity,

(ii) heteroscedasticityþ serial correlation and

(iii) heteroscedasticityþ cross-sectional dependence.
There are many (partial) FGLS options that allow

for robust SEs. Greene (2003, pages 333f.) recom-

mends weighting on groupwise heteroscedasticity. We

follow-up Greene’s recommendation by estimating

three additional (partial) FGLS estimators.9 Like the

OLS estimators, these allow robustness with respect

to (i) heteroscedasticity, (ii) heteroscedasticityþ serial

correlation and (iii) heteroscedasticityþ cross-

sectional dependence.10

Beck and Katz’s (1995) two-step, PCSE estimator

uses the formulae,

b̂ ¼ ~X0 ~X
� ��1 ~X0~y ð7Þ

Var b̂
� �
¼ ~X0 ~X
� ��1 ~X0D̂~X

� �
~X0 ~X
� ��1

ð8Þ

where ~X and ~y are the Prais-transformed vectors of

the explanatory and dependent variables, and D̂ is the

estimate of D in Equation 2.
Table 1 lists the 11 estimators included in this

study. Many more could have been chosen from

Stata and EViews, and from other software packages.

These 11 represent our subjective judgment of

the estimators most likely to be chosen by

researchers working with panel data, in which serial

correlation and cross-sectional dependence may be

present.
Most of the estimators in Table 1 can be estimated

by both Stata and EViews. However, there are slight

differences in how the software packages calculate

specific estimators.11 We use Stata’s ‘version’ for the

first eight estimators in Table 1, and EViews’ ‘version’

for the remaining three. Additional details are

supplied in the table.
Our analysis takes pains to exactly replicate the

output one would obtain using the respective soft-

ware packages. For example, Stata calculates the

common AR(1) parameter, �, differently for the xtgls

and xtpcse procedures. For the xtgls procedure with

7We do not consider dynamic panel data models (cf. Roodman, 2006) as these entail additional issues not primarily related to
the structure of the error variance–covariance matrix.
8We thank Peter Phillips for recommending the use of ‘partial FGLS’ to distinguish these estimators from conventional
FGLS.
9 Specifically, Greene (2003, p. 333) recommends using a robust estimator that incorporates cross-sectional dependence.
10 Estimators 9 through 11 can be thought of as the (partial) FGLS analogues for the OLS estimators 4, 3 and 2, respectively.
11 For example, Stata uses linear methods for estimating �, while EViews employs a nonlinear procedure.
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option corr(ar1), Stata takes the average of the

N group-specific, estimated AR(1) parameters, and

then truncates the estimated value to lie between �1

and 1. In contrast, for the xtpcse procedure with

option corr(ar1), Stata first truncates each of the N

group-specific, estimated AR(1) parameters to lie

between �1 and 1, and then takes the average.

Another example relates to the construction of

confidence intervals. For most procedures, Stata

uses t critical values to construct confidence intervals.

However, both xtgls and xtpcse calculate confidence

intervals using Z critical values.12 Our procedures

incorporate all of these details in calculating coeffi-

cient estimates and confidence intervals.

The experiments

As discussed above, our Monte Carlo experiments set
the population parameters in the DGP to values
estimated from ‘real-world’ panel data sets. Since our
goal is to produce experimental results that are
generalizable to actual research situations, it is
important that we reference a variety of ‘real-world’
data, and that these data embody a wide range of
heteroscedasticity, serial correlation and cross-
sectional dependence behaviours.

We use two sources of ‘real-world’ data for this
purpose: annual real per capita Personal Income data
(PCPI) from US states, and annual real per capita
Gross Domestic Product (GDP) data across countries.

Table 1. List and description of panel data estimators to be studied

Estimator Name Package Command

1 OLS Stata Command¼ xtreg

2 OLS (Heteroscedasticity robust) Stata Command¼ xtreg options¼ robust

3 OLS (Heteroscedasticityþ Serial correla-
tion robust)

Stata Command¼ xtreg options¼ cluster (name of
cross-sectional variable)

4 OLS (HeteroscedasticityþCross-sectional
dependence robust)

Stata Command¼ xtreg options¼ cluster (name of
time period variable)

5 FGLS (Groupwise heteroscedasticity) Stata Command¼ xtgls options¼ corr

(independent) panels (heteroscedastic)

6 FGLS (Groupwise
heteroscedasticityþ Serial correlation)

Stata Command¼ xtgls options¼ corr(ar1) panels

(heteroscedastic)

7 FGLS (Parks) Stata Command¼ xtgls options¼ corr(ar1) panels

(correlated)

8 PCSE (Parks) Stata Command¼ xtpcse options¼ corr(ar1)

9 FGLS (Weights¼Groupwise heteroscedas-
ticity; Covariance¼Heteroscedasticityþ
Cross-sectional dependence robust)

EViews GLS weights¼Cross-section weights

Coef. covariance method¼White cross-

section

10 FGLS (Weights¼Groupwise heteroscedas-
ticity; Covariance¼Heteroscedasticityþ
Serial correlation robust)

EViews GLS weights¼Cross-section weights

Coef. covariance method¼White period

11 GLS (Weights¼Groupwise heteroscedasti-
city; Covariance¼Heteroscedasticity
robust)

EViews GLS weights¼Cross-section weights

Coef. covariance method¼White (diagonal)

12Of particular note is the way that Stata calculates confidence intervals when cluster( ) is chosen. Let Varðb̂Þ be the estimated
coefficient covariance matrix unadjusted for degrees of freedom. The cluster option makes the following d.f. adjustment,

Varðb̂ÞCLUSTER ¼ qcVarðb̂Þ, where qc ¼ ððNT� 1Þ=ðNT� KÞÞðC=ðC� 1ÞÞ

and NT is the total number of observations, K is the number of estimated coefficients and C is the number of ‘clusters’ (either
N or T in our notation). Further, in calculating confidence intervals (and p-values), Stata uses the t critical value with C� 1
degrees of freedom. Contrast this with the conventional approach of using NT�K degrees of freedom. This difference can
have a substantial impact on the width of the confidence interval. Note that EViews follows the latter when estimating its
analog of cluster( ) SEs.
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Further, we work with both the level and growth rate
of these variables, and with two different residual-
producing regression specifications.13 This yields a
total of eight families of ‘real-world’ data. Within each
family, we estimate data sets that vary in size from
T ¼ 10 to T ¼ 25; and from N ¼ 5 to either N ¼ 48
(for the faux US data) or N ¼ 77 (for the faux
international data). The characteristics of the corre-
sponding simulated data sets are discussed below.

Our primary (‘in-sample’) Monte Carlo analysis is
based on 144 experiments. A single experiment is
defined by a unique DGP patterned after a specific-
sized (N, T) panel data set from one of the eight
families of ‘real-world’ data. Within each experiment,
we simulate a thousand panel data sets. For each
simulated panel data set, we calculate estimates of
�x and Varðb̂xÞ for each of the 11 estimators in
Table 1. These estimates are then aggregated to
produce the estimator-specific performance measures,
(i) ‘EFFICIENCY’ and (ii) ‘COVERAGE’. Thus, one
EFFICIENCY value and one COVERAGE value is
produced for each estimator in every experiment.

Measures of estimator performance

EFFICIENCY measures the ratio of the (square
root) of mean square errors for the respective
estimator and OLS. It is defined by

EFFICIENCY ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1000
r¼1 �̂ðrÞESTIMATOR � �x

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1000

r¼1 �̂ðrÞOLS � �x

� �2r

ð9Þ

where �x is the population value, and �̂ðrÞESTIMATOR and
�̂ðrÞOLS are the estimated values of �x in a given
replication using the respective estimator and OLS.
A value less than 100 is interpreted to mean that the
estimator is more efficient than OLS in that
experiment.

COVERAGE calculates the percent of the one
thousand, estimated 95% confidence intervals that
include the true value of �x (i.e. the coverage rate).
A COVERAGE value less than 95 indicates that the
estimated confidence intervals are too narrow on
average. This would imply over-rejection of the null
hypothesis. As stated above, the estimated confidence
intervals for each of the 11 estimators are constructed
to exactly match Stata and EViews output.

Each experiment produces one EFFICIENCY and
one COVERAGE value for each of the eleven

estimators. There are a total of 144 experiments.
The performance results from these experiments are
analysed to identify relationships with observable
data characteristics. Since the FGLS (Parks) estima-
tor cannot be computed when N > T, we divide our
experiments into two groups: N � T (80 experiments)
and N > T (64 experiments).

III. Description of Simulated Data Used in
Our Experiments

This section describes three statistics for measuring
the degrees of groupwise heteroscedasticity, serial
correlation and cross-sectional dependence in the
simulated panel data sets. There are two reasons for
doing this. First, this is the first step towards linking
observable data characteristics and estimator perfor-
mance. Note that the population parameters of the
underlying DGP are not very useful for this purpose,
since they are not directly seen by the econometrician.

Second, the ultimate aim of this article is to develop
a set of recommendations regarding estimator selec-
tion as a function of observable data characteristics.
If our simulated panel data sets display only a narrow
range of error behaviours, we can have little
confidence that our recommendations will generalize
to other panel data sets. A necessary but not
sufficient condition for us to have confidence in the
wider applicability of our results is that our simulated
data sets display a wide range of heteroscedasticity,
serial correlation and cross-sectional dependence
behaviours.

‘HETCOEF’ is a measure of the degree of
groupwise heteroscedasticity present in a given
data set. It is computed by estimating group-specific
SDs that are then sorted in ascending order. The
‘heteroscedasticity coefficient’ is calculated as the
ratio of the SDs associated with the 75th and 25th
percentile ranking, respectively. For example, when
N¼ 5, the associated groupwise SDs, ranked in
ascending order, are �̂1, �̂2, . . . , �̂5; and HETCOEF
is calculated by �̂4=�̂2. In many cases, linear
interpolation is employed. For example, when
N¼ 10, HETCOEF is calculated by �̂7 þ 0:75�
ð�̂8 � �̂7Þ=�̂3 þ 0:25 � ð�̂4 � �̂3Þ. A value greater than
or equal to one is guaranteed given the sorting of
the group-specific SDs.

‘RHOHAT’ estimates the value of the common
AR(1) parameter using observations from a given

13 The main difference between the two residual-producing regression specifications is that only one included time period fixed
effects (both included group fixed effects). The inclusion of time period fixed effects substantially reduces (but does not
eliminate) cross-sectional dependence (cf. Roodman, 2006).

990 W. R. Reed and H. Ye

D
ow

nl
oa

de
d 

by
 [

Z
ho

ng
na

n 
U

ni
ve

rs
ity

 o
f 

E
co

no
m

ic
s 

&
 L

aw
] 

at
 2

3:
51

 1
0 

O
ct

ob
er

 2
01

1 



data set. It is calculated using the formula suggested
by Greene (2003, p. 326):

RHOHAT ¼

PN
i¼1

PT
t¼2 eitei, t�1PN

i¼1

PT
t¼2 e

2
it

where the eit are residuals from an OLS regression.
‘CSCORR’ is a measure of the degree of cross-

sectional dependence present in a given panel data
set. Define jrijj as the absolute value of the sample
correlation coefficient between the residuals from
groups i and j. CSCORR calculates the average of
this value across all (i, j) pairs.

Each of these measures describes a single panel
data set. These are averaged over all one thousand
data sets to produce a summary value for the given
experiment. Table 2 reports these for the ‘in-sample’
experiments in this study. As discussed above,
FGLS (Parks) cannot be estimated when N > T.
Accordingly, the table divides the experiments into
those where N � T (80 experiments) and N > T
(64 experiments). We first consider those experiments
where N � T.

Collectively, the simulated data sets display a wide
range of heteroscedasticity, serial correlation and
cross-sectional dependence behaviours. HETCOEF,
the measure of groupwise heteroscedasticity, ranges
from a minimum of 1.19 to a maximum of 2.31.14 The
mean value of HETCOEF is 1.57, which implies
that the 75th percent-ranked, group-specific SD is

approximately 57% larger than its 25th percent-

ranked counterpart. Overall, the null hypothesis of no

groupwise heteroscedasticity is rejected in approxi-

mately three-fourths of the data sets.
RHOHAT, the measure of serial correlation

behaviour, ranges from a minimum of �0.09 to a

maximum value of 0.79. The average RHOHAT

value across all data sets where N � T is 0.36, and the

null hypothesis of no serial correlation is rejected in

approximately two thirds of these data sets.
We also find substantial cross-sectional depen-

dence in our data sets. The minimum CSCORR value

in the N � T data sets is 0.19, the maximum is 0.89,

and the mean is 0.41. These numbers represent the

average, absolute value of the correlations across all

possible pairs of groups. The null hypothesis of no

cross-sectional dependence is rejected in almost 90%

of all data sets.
The characteristics of the N > T data sets are

generally comparable, aside from the obvious differ-

ence that they include a larger number of cross-

sectional units. The difference in rejection rates is

somewhat misleading, since the power of these tests is

substantially influenced by the number of observa-

tions in the data set.
This statistical description provides evidence that

our experimental data sets embody a wide range of

heteroscedasticity, serial correlation and cross-

sectional dependence behaviours.

Table 2. Description of simulated data sets used in the experiments

Groupwise
heteroscedasticity
(Measure¼HETCOEF)

Serial correlation
(Measure¼
RHOHAT)

Cross-sectional
dependence
(Measure¼CSCORR)

Number of
cross-
sections (N)

Number
of time
periods (T)

(A) Experiments where N�T
Minimum 1.19 �0.09 0.19 5 10
Maximum 2.31 0.79 0.89 20 25
Mean 1.57 0.36 0.41 10 19
H0: No groupwise

heteroscedasticity
No serial
correlation

No cross-sectional
dependence

– –

Rejection rate of H0 72.9% 66.7% 87.7% – –

(B) Experiments where N4T
Minimum 1.25 �0.05 0.22 20 10
Maximum 2.15 0.80 0.78 77 25
Mean 1.77 0.33 0.37 49 16
H0: No groupwise

heteroscedasticity
No serial
correlation

No cross-sectional
dependence

– –

Rejection rate of H0 96.6% 63.5% 99.3% – –

Notes: The measures HETCOEF, RHOHAT and CSCORR are described in Section III of the text. To test the null hypothesis
of no groupwise heteroscedasticity, we apply the test described on the bottom of p. 328 in Greene (2003). To test the null
hypothesis of no serial correlation, we apply the test associated with Equation 7.76 in Wooldridge (2002, p. 176). To test the
hypothesis of no cross-sectional dependence, we use Equations 13–68 on p. 327 in Greene (2003).

14As these values are experiment-specific, the associated range on the level of individual data sets is even larger.
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IV. Analysis of Monte Carlo Experiments

We first analyse estimator EFFICIENCY and then
address COVERAGE. Table 3 enables a comparison
of estimator efficiency. The top part of the table
reports the results of averaging the EFFICIENCY
values over the respective sets of experiments for each
of the 11 estimators. Values less than 100 indicate
that the respective estimator is, on average, more
efficient than OLS.

Estimators 5, 9, 10 and 11 all use the same
weighting matrix (based on groupwise heteroscedast-
icity) and hence all produce the same �̂x values. As a
result, they have identical EFFICIENCY values and
are grouped together in the table. Estimators 1–4 all
produce identical, OLS coefficients. By construction,
the corresponding EFFICIENCY values equal 100,
and thus are not reported in the table.

We first focus on those experiments where N � T
(cf. Column (1)). It is clear that Estimator 7, the
FGLS (Parks) estimator, is substantially more
efficient than the other 11 estimators. The latter
provide efficiency gains that are, at best, only slightly
better than OLS. In contrast, the FGLS (Parks)
estimator is, on average, approximately 25% more
efficient than OLS, as quantified by our
EFFICIENCY measure.

These average figures can mask substantial varia-
tion across experiments. Accordingly, we also calcu-
late the percent of experiments where the respective

estimator does better than OLS. These results are
reported in the bottom part of Table 3. All of the
nonOLS estimators are more efficient than OLS in

at least half of the experiments. However, only
Estimator 7, the FGLS (Parks) estimator, consis-
tently outperforms OLS: FGLS (Parks) is more
efficient in over 95% of the experiments.

The next step in our analysis consists of relating
observable characteristics of the panel data sets to the
efficiency performance of FGLS (Parks). We hope
that this will lead us to identify specific data
situations where FGLS (Parks) can be expected to
produce the greatest gains over OLS.

The first column of Table 4 reports the results of
regressing the EFFICIENCY of the FGLS (Parks)
estimator on the data characteristics HETCOEF,

RHOHAT, CSCORR, N and T. The observations
are drawn from the 80 experiments where N � T.
Negative coefficient estimates are interpreted as
indicating greater efficiency. Heteroscedasticity
robust SEs are used to calculate t-statistics, and the
respective p-values are reported below the estimated
coefficients.

The following data characteristics are associated
with significant efficiency gains for FGLS (Parks):
lower (groupwise) heteroscedasticity, lower cross-
sectional dependence, a smaller number of cross-

sectional units and a larger number of time periods.
The contribution of serial correlation is insignificant.

The first two results, while consistent with previous
research,15 may be surprising given that it is the
presence of groupwise heteroscedasticity and cross-
sectional dependence (along with serial correlation)
that are ultimately responsible for the greater
efficiency of FGLS. We suspect these results are
finite sample phenomena driven by imprecise estima-
tion of the error variance–covariance matrix: The
larger the values of the underlying variance–
covariance elements, the greater the potential for

mis-estimation of these values to impair the efficiency
of FGLS relative to OLS.

Evidence in favour of this interpretation is
provided by the estimated coefficient for T. While
increases in both N and T grow the number of
observations in the data set, an increase in N expands
the number of unique parameters in the error
variance–covariance matrix, while an increase in
T does not.16 Thus, an increase in T should improve
the precision of the variance–covariance estimates,
yielding greater efficiency gains for FGLS (Parks).

Table 3. Comparison of estimator EFFICIENCY

Data sets

N�T N4T

(A) Average EFFICIENCY
Estimator 5/9/10/11 95.2 82.9
Estimator 6 95.1 83.1
Estimator 7 73.9 –
Estimator 8 100.8 101.0

(B) Percent of experiments where
estimator is more efficient than OLS
Estimator 5/9/10/11 58.8 84.4
Estimator 6 71.3 79.7
Estimator 7 96.3 –
Estimator 8 62.5 51.6

Notes: EFFICIENCY is defined in Equation 5 in the text.
There are 80 experiments for which the respective panel
data sets have sizes such that N � T, and 64 experiments
where N > T.

15Driscoll and Kraay (1998) find that coverage rates for the SUR estimator decline as the degree of cross-sectional
dependence increases (Table 1, p. 554).
16When N increases by 1, the number of unique parameters in the Parks error variance–covariance matrix increases by Nþ 1,
while the number of observations increases by T, and recall that T	N.
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The estimated negative coefficient for T is consistent

with this explanation.
The asymptotic efficiency result for the FGLS

(Parks) estimator requires large T, fixed N. The

intuition relates to the fact that as T=N gets larger,

there is more data to estimate each parameter in the

error variance–covariance matrix. This is supported

by the empirical results of Table 4. When the variable

(T=N) is substituted for N and T, the individual size

variables become statistically superfluous.17

Table 4 makes clear that there are many data

characteristics that contribute to the efficiency of the

FGLS (Parks) estimator. In an ideal world, there

would be one characteristic that could alert research-

ers when this estimator was likely to be most effective.

After some experimentation, we found that (T=N) can

serve this role.
Figure 1 plots the EFFICIENCY values for each of

the respective estimators, where the individual

experiments/observations are sorted in ascending

order of (T=N). The vertical axis reports the

estimator’s EFFICIENCY value, and the horizontal

axis indicates the ratio of time periods to cross-

sectional units (T=N).
Due to the construction of our experiments, the

latter values increase in discrete jumps, indicated by

vertical grid lines in the graph. For example, all the

observations before the first dashed line represent

experiments where T=N ¼ 1:00. The observations

before the second dashed line and including the first

dashed line represent experiments where T=N ¼ 1:25;
and so on.

The thick, solid line plots the EFFICIENCY

values of the FGLS (Parks) estimator. While there

Table 4. Determinants of EFFICIENCY for estimator 7, and estimators 5/9/10/11 and 6

Data sets (Estimator)

Variable N�T (Estimator 7) N4T (Estimator 5/9/10/11) N4T (Estimator 6)

Dependent variable¼EFFICIENCY
Constant 20.746 (0.232) 247.72 (0.000) 169.52 (0.000)
HETCOEF 22.409 (0.009) �68.906 (0.000) �50.636 (0.001)
RHOHAT �0.135 (0.983) 4.356 (0.154) �9.687 (0.112)
CSCORR 76.929 (0.000) �64.203 (0.000) 37.560 (0.371)
N 2.511 (0.000) �0.117 (0.017) �0.104 (0.192)
T �2.080 (0.000) �0.906 (0.000) �0.148 (0.782)
R2 0.646 0.823 0.646
Mean of dependent variable 73.86 82.86 83.13
Number of observations 80 64 64

Notes: Coefficient estimates are derived from OLS regression with White SEs. The coefficient p-values are
reported in parenthesis below the respective estimates. Estimator 7 is the FGLS (Parks) estimator. Estimators
5/9/10/11 all produce the same coefficient estimates, equivalent to FGLS (Groupwise heteroscedasticity), and
hence are grouped together. Estimator 6 is the FGLS (Groupwise heteroscedasticity þ Serial correlation)
estimator.
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40
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120

160

200

Estimator 5/9/10/11
Estimator 6
Estimator 7

Estimator 8
OLS

1.25 T/N1.50 2.00 2.50 3.00 4.00 5.00

Fig. 1. Comparison of estimator EFFICIENCY: N·T
Notes: EFFICIENCY is represented by the vertical axis.
The observations/experiments are sorted in ascending order
of T/N. Observations to the left of the first vertical gridline
have T/N¼ 1.00. Observations to the left of the second
vertical gridline, and including the first gridline, have
T/N¼ 1.25; and so on. Estimator 7 is the FGLS (Parks)
estimator.

17 The p-value for the coefficient of N when it is included as an additional variable in a specification that already includes
(T/N) is 0.344. The p-value for the coefficient of T when it is added to a specification that already includes (T/N) is 0.192.
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is substantial variation, a clear negative trend is
apparent, indicating greater relative efficiency in the
FGLS (Parks) estimator as T=N increases. This plot
indicates the following: When T=N 	 1:50, there is
separation between FGLS (Parks) and all other
estimators, including OLS. It is consistently superior.
When 1 � T=N < 1:50, no estimator dominates. In
this case, FGLS (Parks) offers only marginal
improvement on OLS, and is sometimes inferior.
Other estimators tend to outperform both FGLS
(Parks) and OLS in some instances, but do worse in
others. This leads to the first recommendation:

Recommendation 1: When the primary concern is
efficiency and T=N 	 1:50, use FGLS (Parks).

Unfortunately, our experimental results are not
able to identify a dominant estimator when
1 � T=N < 1:50.

We continue our study of estimator
EFFICIENCY, but now move to the case where
N > T. With FGLS (Parks) no longer in the choice
set, the question is whether another estimator can be
found that is consistently more efficient than OLS for
some identifiable data situations. The second column
of Table 3 compares average EFFICIENCY (top part
of the table) and the percent of experiments where the
respective estimator is more efficient than OLS
(bottom part of the table).

Estimator 5/9/10/11 and Estimator 6, which are
(partial) FGLS estimators that weight on (i) group-
wise heteroscedasticity and (ii) groupwise heterosce-
dasticity þ serial correlation, perform quite similarly.
Both offer some efficiency advantages relative to
OLS, though the gains are not as substantial as in the
previous case with FGLS (Parks).

As before, we attempt to relate estimator perfor-
mance to observable data characteristics.18 The
second column of Table 4 shows that greater relative
efficiency for FGLS (Groupwise heteroscedasticity) is
significantly associated with greater heteroscedasti-
city, greater cross-sectional dependence, and data sets
with a larger number of cross-sections and a larger
number of time periods. Serial correlation is
insignificantly associated with the efficiency of this
estimator. With respect to the FGLS (Groupwise
heteroscedasticityþ Serial correlation) estimator,
Column (3) shows its relative efficiency increases
significantly with greater heteroscedasticity. The
estimated contributions of the other data character-
istics are statistically insignificant.

Once again we are faced with a situation where
there are many panel data characteristics that

contribute to estimator efficiency. Our hope is that
one of these characteristics will either be sufficiently
dominant, or sufficiently correlated with the other
characteristics, that it can serve as a guide for
selecting a ‘best’ estimator.

Figure 2 reports the fruits of our experimentation.
In this figure, the observations/experiments are sorted

in ascending order of HETCOEF, so that groupwise
heteroscedasticity increases from left to right. This
follows up the observation from Table 4 that the
relative efficiencies of both FGLS (Groupwise
heteroscedasticity) and FGLS (Groupwise heterosce-
dasticity þ Serial correlation) increase as groupwise

heteroscedasticity becomes more pronounced.
The solid vertical line in the figure splits the

observations into two groups: those with HETCOEF
values less than 1.67, and those with HETCOEF
values larger than 1.67. This value appears to
represent a threshold affecting the relative perfor-
mance of these two estimators: For large values of
groupwise heteroscedasticity (HETCOEF4 1.67),
both FGLS (Groupwise heteroscedasticity) and

FGLS (Groupwise heteroscedasticityþ Serial corre-
lation) provide consistent efficiency gains relative to
the other estimators. In contrast, no one estimator is
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Estimator 5/9/10/11
Estimator 6

Estimator 8
OLS

HETCOEF = 1.67

Fig. 2. Comparison of estimator EFFICIENCY: N`T
Notes: EFFICIENCY is measured by the vertical axis.
The observations/experiments are sorted in ascending
order of HETCOEF, which is a measure of the degree of
groupwise heteroscedasticity present in the data set.
Further detail is in given in Section III in the text.
Estimators 5/9/10/11 are equivalent to FGLS (Groupwise
heteroscedasticity). Estimator 6 is FGLS (Groupwise
heteroscedasticity þ Serial correlation).

18Asymptotic theory is not helpful in identifying key determinants in this case because the respective estimators incorrectly/
incompletely model the error variance–covariance matrix.
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distinctly preferred when HETCOEF falls below this

value. This motivates the next recommendation:

Recommendation 2: When the primary concern is

efficiency, N > T, and HETCOEF > 1:67, use either

FGLS (Groupwise heteroscedasticity) or FGLS
(Groupwise heteroscedasticityþ Serial correlation).

Unfortunately, when N > T and HETCOEF < 1:67,
no estimator appears to consistently dominate the

others.
Next is a comparison of estimator performance

with respect to accuracy in estimating confidence
intervals. We continue to separate the cases where

N � T and N > T. COVERAGE measures the

percent of estimated 95% confidence intervals that
contain the true value of �x. Columns (1) and (3) of

Table 5 report the average values for this measure

for each estimator over the respective sets of

experiments.
In a few of the individual experiments,

COVERAGE is larger than 95 for some estimators.

This can cause the average COVERAGE value to be

misleading. For example, combining the values 90
and 100 produces an average value of 95, suggesting

that the respective estimator is highly accurate in its

estimation of confidence intervals. To address
this problem, we also calculate the absolute value of

the difference between 95 and COVERAGE

(j95� COVERAGEj) for each experiment and esti-
mator. The average value of this alternative measure

is reported in Columns (2) and (4) of Table 5. In fact,

the two measures are very similar, as can be

confirmed by noting that the sum of the two average
values is close to 95 for all estimators.

As a group, the 11 estimators do a poor job of

estimating confidence intervals. Further, there are big
differences between estimators. The most efficient
estimator whenN � T – the FGLS (Parks) estimator –

is the worst estimator when it comes to estimating
confidence intervals. On average, only 43.3% of the
95% confidence intervals estimated with this estima-

tor contain the population value. This accords with
similar findings reported by Beck and Katz (1995).
The estimator that comes closest to producing

accurate confidence intervals is Estimator 8. This is,
in fact, the PCSE estimator promoted by Beck and
Katz (1995) as an alternative to FGLS (Parks).

We proceed with what is by now a familiar
procedure: We regress the relevant performance

measure (in this case, j95� COVERAGEj) for the
best estimator (Estimator 8 when N � T) on obser-
vable characteristics of the panel data sets. The

results are reported in the first column of Table 6.
A negative coefficient indicates that an increase in the
respective characteristic is associated with more

accurate confidence intervals for that estimator.
It is apparent that several of the characteristics are
significantly associated with this performance

measure. As before, we find that plotting estimator
performance against individual data characteristics
identifies relationships that can lead to estimator

recommendations.
Figure 3 plots observations of j95� COVERAGEj

for each of the estimators, where the experiments are
sorted in ascending order of RHOHAT. Panel (A)

represents the case where N � T. All 11 estimators
are reported in the figure, which results in an
informative, albeit messy, graph. For reasons

Table 5. Comparison of accuracy of confidence intervals across estimators

N�T N4T

COVERAGE

Absolute value of
(95-COVERAGE)
over all experiments COVERAGE

Absolute value of
(95-COVERAGE)
over all experiments

Estimator 1 73.6 21.9 74.2 21.9
Estimator 2 73.7 21.8 77.9 18.8
Estimator 3 83.5 11.6 91.8 3.9
Estimator 4 72.7 22.5 74.0 21.3
Estimator 5 69.8 25.6 72.6 22.9
Estimator 6 86.4 9.3 88.8 7.2
Estimator 7 43.3 51.7 – –
Estimator 8 87.8 7.2 88.1 6.9
Estimator 9 66.1 28.9 65.4 29.6
Estimator 10 68.1 26.9 80.1 14.9
Estimator 11 69.5 25.9 72.4 23.2

Notes: COVERAGE is the percent of estimated 95% confidence intervals that contain the population value.
Further detail is provided in Section II of the text.
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discussed below, we highlight Estimator 4 (OLS
(HeteroscedasticityþCross-sectional dependence
robust)) and Estimator 8 (PCSE (Parks)).19

We observe that many of the estimators worsen in
their estimation of confidence intervals once
RHOHAT exceeds 0.30. Interestingly, this same
pattern is observed in the lower panel of Fig. 3,
which plots the experiments where N > T. Panels (A)
and (B) make clear that none of the estimators,
including the PCSE estimator, produce consist-
ently accurate confidence intervals when
RHOHAT > 0:30.20

In response, we concentrate our search for a ‘best’
estimator on those cases where RHOHAT < 0:30.
Table 7 repeats the analysis of Table 5 except that it
only includes observations where the estimated �
value is less than 0.30. Several estimators now
demonstrate reasonable performance: However,
Estimator 4 (OLS (Heteroscedasticity and cross-
sectional dependence robust)) and Estimator 8 (the
PCSE estimator) demonstrate the best overall per-
formance, considered over both N � T and N > T.
This leads to our final recommendation:

Recommendation 3: When the primary concern is
constructing accurate confidence intervals and
RHOHAT < 0:30, we recommend either Beck and
Katz’s (1995) PCSE estimator or the OLS
(HeteroscedasticityþCross-sectional dependence
robust) estimator.

When RHOHAT > 0:30, our results suggest that no
estimator is consistently reliable, and estimated
confidence intervals should not be trusted.

V. An ‘Out of Sample’ Check

In an ideal world, we would be able to analytically
derive the finite sample properties of our panel data
estimators. Unfortunately, this is not the situation
that we face. As a result, we have turned to Monte
Carlo experimentation to establish performance
patterns that could serve as the basis for estimator
recommendations. The concern is that these recom-
mendations will only be valid for the specific,
simulated panel data sets on which they are based.

To address this concern, we simulate additional
panel data sets patterned after an entirely different
sort of ‘real world’ data: tax burden data from US
states (both levels and growth rates), and government
consumption share data across countries (levels only).
The advantage of turning to dissimilar data is that
it can introduce unforeseen data qualities that affect
estimator performance. A total of 52 additional
experiments are conducted: 30 involving panel data
sets where N � T, and 22 where N > T. If the results
from our Monte Carlo experiments are generalizable,
the previous recommendations should perform well
in these additional data settings.

Recommendation 1 states that when T=N 	 1:50
and efficiency is the primary concern, researchers
should use FGLS (Parks). Figure 4 replicates the
analysis of Fig. 1, using observations from the
additional, ‘out of sample’ experiments. Despite
using altogether different, simulated panel data sets,
the two figures are quite similar. FGLS (Parks)
consistently outperforms all other estimators when
T=N 	 1:50 for these ‘out of sample’ data sets.

Table 6. Determinants of accuracy of confidence intervals for estimator 8

Data sets (Estimator)

Variable N�T (Estimator 8) N4T (Estimator 8)

Dependent variable¼ 95� COVERAGEj j

Constant 6.5701 (0.004) �11.712 (0.081)
HETCOEF 0.8197 (0.392) 4.5458 (0.038)
RHOHAT 12.796 (0.000) 11.7680 (0.000)
CSCORR 8.1917 (0.000) 28.358 (0.000)
N �0.1456 (0.002) �0.0067 (0.706)
T �0.3818 (0.000) �0.2158 (0.026)

R2 0.796 0.717
Mean of dependent variable 7.245 6.908
Number of observations 80 64

Notes: Coefficient estimates are derived from OLS regression with White SEs. The coefficient p-values are
reported in parentheses below the respective estimates. Estimator 8 is the PCSE estimator.

19While it is not distinguished in the legend, FGLS (Parks) is identifiable by its wild swings and extreme values.
20As in the previous case, we find no evidence that this threshold value is significantly affected by either N or T.
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The validity of Recommendation 1 is upheld in these
additional experiments.

Recommendation 2 states that when the primary
concern is efficiency, N > T, and the value of
HETCOEF > 1:67, researchers should use either
FGLS (Groupwise heteroscedasticity) or FGLS
(Groupwise heteroscedasticityþSerial correlation).
Figure 5 puts this recommendation to the test by
replicating the analysis of Fig. 2 with the new data sets.
Recommendation 2 is likewise confirmed as good

advice: Both estimators consistently dominate the
others when HETCOEF takes values larger than 1.67.

The last recommendation addresses choice of
estimator when the primary concern is accurate
confidence intervals: Fig. 6 applies the analysis of
Fig. 3 to the ‘out of sample’ panel data sets.
The superior performances of the OLS
(HeteroscedasticityþCross-sectional dependence
robust) estimator and the PCSE estimator are evident
in both panels when RHOHAT < 0:30. This provides
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Fig. 3. Comparison of accuracy of confidence intervals

across estimators. (a) N·T; (b) N`T
Note: The vertical axis reports accuracy of estimator con-
fidence intervals using the measure j95� COVERAGEj,
which is described in Section IV of the text. The
observations/experiments are sorted in ascending order
of RHOHAT, which is a measure of the degree of
serial correlation in the data set. This measure is defined
in Section III. Estimator 4 is OLS (Heteroscedasticityþ
Serial correlation robust). Estimator 8 is the PCSE
estimator.

Table 7. Comparison of accuracy of confidence intervals

across estimators when data set is characterized by

RHOHAT50.30

N�T N4T

Absolute value of
(95-COVERAGE)
overall experiments

Absolute value of
(95-COVERAGE)
overall experiments

Estimator 1 5.2 4.0
Estimator 2 4.5 1.8
Estimator 3 9.9 1.5
Estimator 4 3.7 1.4
Estimator 5 6.3 2.1
Estimator 6 4.9 2.0
Estimator 7 47.9 –
Estimator 8 3.1 2.4
Estimator 9 8.6 6.9
Estimator 10 19.9 6.4
Estimator 11 6.4 2.1

Notes: There are 39 experiments where the respective data
sets were sized with N � T, and 32 experiments where
N > T.
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Fig. 4. ‘Out of sample’ comparison of estimator

EFFICIENCY: N·T
Note: This figure replicates the analysis of Fig. 1 except that
it uses the ‘out of sample’ observations/experiments as
described in Section V.
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confirmation that Recommendation 3 is also valid
when applied to additional data sets.

These ‘out of sample’ experiments provide some
evidence that the recommendations based on the
original set of Monte Carlo experiments can be
generalized to other data sets. However, additional
testing is warranted.

VI. Conclusion

A researcher is working with panel data that may
contain both serial correlation and cross-sectional
dependence. Statistical software packages such as
EViews, LIMDEP, RATS, SAS, Stata, TSP and
others offer many estimator choices. Which one(s)
should he/she use? At the present time, there is no
definitive answer to this question. The finite sample
properties of these estimators are analytically inde-
terminate. And while their asymptotic properties can
be derived, studies such as Beck and Katz (1995) have
demonstrated that these are unreliable predictors of
actual estimator performance. Given this state of
affairs, Monte Carlo studies offer the most promising
way forward.

This study uses Monte Carlo experimentation to
study the performance of a number of common panel
data estimators. We focus on data scenarios where
the number of cross-sectional units is less than 100
and the number of time periods range from 10 to
25 – sizes typical for panel data studies of economic

growth across countries and US states. The experi-
ments analyse a linear model with fixed effects and an
error structure that allows both serial correlation and
cross-sectional dependence. An innovation of our
study is that it constructs simulated panel data sets
that are patterned after ‘real world’ data.

Our Monte Carlo experiments uncover large
differences in how the various estimators perform –
differences that could substantially affect the results
of empirical research. This highlights the importance
of choosing a good estimator. Further, we find that
estimators that perform well on efficiency grounds
may perform poorly when estimating confidence
intervals and vice versa. A good example of this is
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Fig. 6. ‘Out of sample’ comparison of accuracy of

confidence intervals across estimators. (a) N·T; (b) N`T
Note: This figure replicates the analysis of Fig. 3 except that
it uses the ‘out of sample’ observations/experiments as
described in Section V.
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Fig. 5. ‘Out of sample’ comparison of estimator

EFFICIENCY: N`T
Note: This figure replicates the analysis of Fig. 2 except that
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described in Section V.
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provided by the FGLS (Parks) estimator, which is

asymptotically efficient given our DGP. FGLS

(Parks) was the best overall performer on efficiency

grounds but the worst when it came to estimating

confidence intervals. The lesson here is that research-

ers may have to use one estimator if they want the

‘best’ coefficient estimates, and another if they desire

reliable hypothesis testing.
Another interesting finding is that testing for the

presence of nonspherical errors, such as heterosce-

dasticity, serial correlation and cross-sectional depen-

dence, is only of limited value in choosing the

appropriate estimator. Even when these behaviours

are present, it does not follow that the associated

estimator is the best one to use. For example,

OLS (HeteroscedasticityþCross-sectional depen-

dence robust), which ignores serial correlation, does

a much better job of estimating confidence intervals

than FGLS (Parks).
Our Monte Carlo experiments identify three panel

data characteristics that are especially important for

estimator performance. These are: (i) the ratio of the

number of time periods to number of cross-sectional

units (T=N), (ii) the degree of groupwise heterosce-

dasticity, as measured by a ‘heteroscedasticity coeffi-

cient’ (HETCOEF) and (iii) the degree of serial

correlation, as measured by an estimate of the AR(1)

parameter (RHOHAT). The last two measures are

constructed in a straightforward fashion from OLS

residuals.
The results of our Monte Carlo experiments

suggest the following three recommendations for

researchers working with balanced panel data

characterized by Parks-style heteroscedasticity,

serial correlation and cross-sectional dependence:

(1) When the primary concern is efficiency and

T=N 	 1:50, use FGLS (Parks).
(2) When the primary concern is efficiency, N > T,

and HETCOEF > 1:67, use either FGLS

(Groupwise heteroscedasticity) or FGLS

(Groupwise heteroscedasticityþSerial

correlation).
(3) When the primary concern is constructing

accurate confidence intervals and

RHOHAT5 0:30, use either Beck and Katz’s

(1995) PCSE estimator or OLS

(HeteroscedasticityþCross-sectional depen-

dence robust).

These recommendations do not cover all possible

data scenarios. Unfortunately, our Monte Carlo

experiments were not able to identify dominant

estimators in these other cases.

It is worth stating the obvious that these recom-
mendations are not based on theory, but on empirical
patterns observed from Monte Carlo experiments. As
such, there are grounds for scepticism that these
results apply to anything other than the artificial
data from which they were derived. To address
this concern, we apply these recommendations to
additional simulated panel data sets, patterned
after altogether different ‘real world’ data. We find
that the three recommendations continue to be
valid when applied to these ‘out of sample’ panel
data sets.

In the end, only additional testing will determine
whether these recommendations are robust for
applications to other data. It is hoped that this
study stimulates further research along these lines.
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